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Four Galerkin finite-element methods are tested for solving the free-boundary problem that
describes steady solidification. The formulations differ in the solution method used to account
for the unknown shape of the melt/solid interface, in the interphase condition (either balance
of heat flux or equilibrium of temperature) distinguished for locating the interface, and in the
technique used for solving the systems of algebraic equations that result from the finite-
element approximations. Methods that use the melting point isotherm to locate the melt/solid
interface are found more accurate and efficient than formulations based on the interfacial
energy balance, Solution by a Galerkin—Newton algorithm of the free-boundary problem
transformed to a fixed domain is most efficient when the field problem in each phase is made
nonlinear by including radiation from the melt and solid to the surroundings.

1. INTRODUCTION

Precise understanding of the physics that controls the shape of the phase boundary
separating melt and solid during steady solidification is becoming increasingly
important. For semiconductor crystals grown from the melt, the shape of the
melt/solid interface influences both the density of crystallographic defects [1] and the
uniformity of composition [2] in the crystal. The shape of this phase boundary is set
by transport of heat and mass through melt and solid phases, across the interphase
boundary, and to the surroundings. In general, fluid flow in the melt controls
convective heat and mass transfer. The mathematical description of steady
solidification is a two-phase free-boundary problem composed of a set of coupled
partial differential equations and boundary conditions that are solved for the field
variables (velocity, temperature, concentration, and pressure) as well as for the shape
of the phase boundary. Nonlinearities appear in such a solidification model from both
the coupling between the shape of the phase boundary and the field variables and
from nonlinear (e.g., convective) terms in the field equations and in conditions
imposed along fixed and free boundaries. The numerical methods discussed in this
paper are focused on efficient and accurate solution of steady solidification problems
with both types of nonlinearities.

Although many numerical methods have been proposed for solving two-
dimensional moving- (time dependent) and free- (steady state) boundary problems,

118

0021-9991/83/010118-33$03.00/0

Copyright © 1983 by Academic Press, Inc.
All rights of reproduction in any form reserved.



STEADY SOLIDIFICATION PROBLEMS 119

only a few have treated models which have nonlinearities in the field equations, such
as arise from accounting for natural convection [3-5]. Most techniques [6-23] have
been designed for Stefan-like problems where only one field variable, usually
temperature, is present and the field equation is linear. In these algorithms the
calculation of the temperature field and interface shape have been decoupled into
successive steps. Once an interface shape has been assumed, either finite difference or
finite element approximations reduce the energy equation and boundary conditions to
a set of linear algebraic equations. The temperature field calculated as the solution to
these equations is used to compute another approximation to the interface from one
of the boundary conditions at the interface distinguished for this purpose. The
iteration is repeated until it converges. Decoupling the calculation of the interface
shape and field variables amounts to a successive approximation iteration that
converges linearly [24]. Adding nonlinearities to the field equations complicates these
iterations by making the equation set that describes the temperature field nonlinear
and the solution of these equations iterative.

An alternative to successive approximations is to iterate simultaneously for the
interface shape and field variables. Newton’s method [24] is the most powerful
scheme for doing this because it gives quadratic convergence. As is shown here, the
rapid convergence of Newton’s method compared to successive approximation
techniques makes a profound difference in the efficiency of the algoritm, especially
when the nonlinearities in the field equations cause multiple iteration loops. Also, the
application of Newton’s method leads to powerful techniques for computer-aided
analysis of the sensitivity of the solution to parameters and of solution multiplicity
[25]. To implement Newton’s method requires computing the Jacobian matrix that
describes the sensitivity of the residuals of the energy balance and boundary
conditions to changes in the temperature field and interface location. The sensitivity
of the residuals to changes in the interface shape involve changes in the grid used for
the approximation and hence in the approximation itself.

We present four methods, each based on Galerkin finite-element analysis, for
solving steady solidification problems. The four schemes are compared for a Stefan-
like solidification problem presented in Section 2 where only heat transfer determines
the shape of the phase boundary, which is assumed to be represented as a single-
valued function of one spatial coordinate. This prototype problem arises as a model
for the forming of thin silicon sheets by solidification of melt extruded through a die,
a technique known as edge-defined film-fed growth [26-27]. Nonlinearities in this
model arise from the unknown location of the melt/solid interface, from latent heat
release at the interface, and from radiation of heat from the sides of the sheet to the
ambient. This last nonlinearity affects only the discretized field equations and is a
simple example of the type caused by fluid flow in the melt which serves there to
point to differences between successive approximation and Newton iteration methods.

The finite element and finite difference methods developed previously for solving
this type of free-boundary problem and the four new methods presented here are
classified according to (i) the method used to account for the nonlinearity caused by
the unknown interface, (ii) the condition, either interfacial equilibrium of temperature
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or energy conservation, used as the distinguished boundary condition, and (iii) the
method used to solve the set of nonlinear algebraic equations that result from the
choices made in (i) and (ii).

Two boundary conditions are specified at the melt/solid interface. The first forces
both melt and solid temperatures along the phase boundary to equal the equilibrium
melting temperature of the material; the second balances the net flux by conduction
through the interace with the latent heat released by solidification. Although both
interfacial conditions (along with the energy balances and other boundary conditions)
must be satisfied simultaneously by any solution, it is convenient in constructing
numerical methods and asymptotic solutions to classify them. We shall consider one
condition as an interphase boundary condition for the energy balances and the second
condition will be distinguished for determining the location of the phase boundary.
This distinction seems arbitrary. As is shown in this paper, however, the choice of
distinguished condition strongly influences the rate of convergence and accuracy of a
numerical solution to a free-boundary problem. Silliman and Scriven first pointed out
this fact with respect to convergence of finite-element schemes for solving the free-
boundary problem arising from the steady flow of a viscous liquid with a free surface
[28].

Methods for handling the nonlinearity caused by the free boundary are categorized
according to whether the numerical grid (either elements of difference points) is fixed
in space [6-14]| or deforms [15-23] to conform with the shape of the phase
boundary. The enthalpy method [7-8] uses a regular finite-difference grid and locates
the melt/solid interface only to within a grid block. Calculation of accurate shapes by
this method requires fine grids and hence is prohibitively expensive for complicated
problems.

More accurate approximations for interface shape are calculated with fixed grids
when the original solidification problem is transformed so that melt and solid regions
have fixed boundaries, of which the interface is one. The problem reduces to solving a
coupled set of nonlinear partial differential equations, boundary conditions, and a
distinguished condition, all written in terms of the temperature field and interface
shape. This transformation technique was applied first by Landau [8] for one-
dimensional and later by others [9—11] to two-dimensional Stefan problems where the
inteface shape was a function of a single spatial coordinate. The Isotherm—Migration
method [12-14] is a special case of the Landau transformation where temperature is
interchanged with a spatial variable.

Previous applications of transformation methods [10-11] all solve the nonlinear
equation set by successive iteration between the interface shape and the temperature
field. As shown in Section 3, Newton’s method is simply applied to this equation set
because the dependence on the shape of the phase boundary is explicit in the
transformed equations and all the terms of the Jacobian matrix are easily calculated
in closed form.

Solution of the free-boundary problem in the original coordinate system has the
additional complication of requiring the genration of a new, and generally irregular,
grid at each iteration. Meyer [15-18] has developed finite difference methods based
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on the method of lines for solving free-boundary and Stefan problems with linear field
equations. Several finite element techniques have been proposed for moving elements
in Stefan problems [19-23]; these are reviewed in |[23]. Each of these methods
integrates explicitly for the melt/solid interface location at each time step and avoids
the problem of solving nonlinear algebraic equations. Finite element methods have
not been applied previously to the steady solidification problem.

The classification of numerical methods for solving free-boundary problems is
summarized in Fig. 1. The four finite element methods discussed in detail in
Sections 3 are I, V, VI, and VIII. Comment about the viability of methods III and
VII are also made. The accuracy and efficiency of the four schemes are compared in
Section 4 for two cases, in terms of parameters, of the model problem. In the first, the
nonlinearities caused by radiation and latent heat are removed and a closed form
solution is known for comparing accuracy. In the second, extreme values of the
Stefan (latent heat) and radiation numbers are used to demonstrate the rapid
convergence of the algorithm based on Newton’s method over wide ranges of
parameters.

2. MODEL SOLIDIFICATION PROBLEM

In edge-defined film-fed growth (EFG), a sheet of melt is extruded from a die at a
constant rate V" and solidified by transferring heat from the sheet to the surroundings.
We assume that the die, melt, and solid sheet all have the same thickness 2b and that
the sheet is so wide that heat transfer is the same across any longitudinal section of
melt and solid. We analyze only one slice of the sheet; see Fig. 2.

Our heat transfer model for EFG is developed in [27] and is only presented here in
dimensionless form. The half-thickness of the die b has been used as the characteristic
length scale and temperature T, of the melt exiting from the die has been used as the
characteristic temperature scale.

2.1 Heat Transfer Problem

A rectangular Cartesian coordinate system (x, y) is defined with its origin at the
center of the sheet and in the plane of the die exit. The interface between melt and
solid is located at y = A(x) and the vector field n everywhere normal to this interface
is

n=(e,—e.h)/[1 +h]", (1)

where h, = 0h/0x and (e,, e,) are unit vectors in the x- and y-directions, respectively.
The vectors normal to other boundaries are shown on Fig. 2.
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Fic. 2. Model of edge-defined film-fed growth (EFG). Computational domain is marked by (\\\)-

To simplify the thermal model, we set the thermal and physical properties, i.e.,
density p, thermal conductivity k, heat capacity c,, heat transfer coefficient 4, and

emissivity ¢, of melt and solid equal. The dimensionless energy balances in meit
(i=¢) and solid (i = ) are

V.VT;—P(e, - VT;) =0, i={,q, 0<y<L, 0<x<1 (2)

The Peclet number P = Vpc,b/k measures the importance of heat transfer by
convection in the growth direction relative to conduction across the sheet. The melt
and solid occupy regions &, and &, respectively, as shown in Fig. 3.

At the phase boundary (y = h(x), 0 < x < 1) the interfacial energy balance

n-VT,—n-VT,=PS(n-e,) 3)

581/49/1-9
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FiG. 3. Sample finite-element discretization in original coordinate system. The melt/solid interface is
the mesh curve denoted as the boundary #2,. The notation for other boundaries is also shown.

and the conditions for thermal equilibrium
T (x, h(x)) = T, (x, h(x)) = T}, 4)
must be met. The dimensionless melting temperature is T, and the Stefan number is

S =A4H/c,T,, where 4H, is the latent heat of fusion. Heat transfer from melt and
solid to the surroundings at temperature T is by both convection and radiation,

—8T,/ox=B(T,~ T, )+ R(T*—T.), i=tq4 x=1, 0<y<L. (5)
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The Biot number B=hb/k and radiation number R=0ebT;/k (0 is the
Stefan—Boltzmann constant) measure the efficiencies of heat losses from the sheet by
convection and radiation relative to conduction across the thickness of the sheet.
These two dimensionless numbers control the amount of heat lost laterally from the
sheet and hence control the curvature of the phase boundary.

The midplane of the sheet is assumed to be a plane of reflective symmetry

oT;/ox =0, i=¢ 4, x=0, 0<y<L, (6)

and the temperatures at the die exit (y =0) and at the end of the solid (y =L) are
fixed at constant values,

T,(x,00=1, T(xL)=T, 0<y<L (7

Equations (2-7) define a mathematical free-boundary problem for the temperature
fields in melt and solid and the shape of the melt/solid interface. The equation set is
nonlinear because of the coupling between A(x) and the temperature fields through
boundary condition (3) and because of the quartic dependence on temperature in
boundary condition (5) caused by radiation from the sheet. Allowing the material
properties to differ in the melt and solid causes other nonlinearities; in this case, the
form of energy balance (2) to be satisfied depends on the location of the phase
boundary A(x).

A closed-form solution of equation set (2-7) is known only when all nonlinearities
are removed; this is the case when radiation (R =0) and latent heat (S =0) are
neglected. Then the problem reduces to heat transfer in a moving sheet of a single
material and the temperature field is calculated by separation of variables techniques
[29]. The isotherms for this case are shown in Fig. 4 for the variables T,=T_ =0,
L=1, B=1, P=0.5, and the isotherm T, =0.5 designated as the melt/solid
interface. This case is used as an initial base for comparison of the four finite-element
algorithms.
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Fic. 4. Isotherms for prototype solidification problem; P =0.5, B = 1.0, and T,, = 0.5.
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2.2 Transformation to Regions with Known Boundaries

To make explicit the nonlinearities caused by the unknown shape of the melt/solid
interface, the free-boundary problem of Egs. (2)-(7) is mapped to the coordinate
systems (&, n) in melt and (&, A) in solid as shown in Fig. 5. The melt/solid interface
has known shape in the transformed coordinate systems; melt occupies the region
Z,0<¢<1, 0<n<L/2) and solid occupies the region Z,(0<é< 1,
L/2 < A< L). The relationships between the transformed coordinates and the original
coordinates are

melt: &=x, n=yL/2h(x), 8)
solid: E=x, A= [1—(1/2)L ~ )L —h(x))L. ©)

a8, 3%, ,

Fi1G. 5. Sample finite-element mesh in transformed coordinates.
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The transformed coordinates £ and & are identical and will be used interchangeably.
Equations (8) and (9) define nonorthogonal coordinate systems in melt and solid. To
preserve the gradient form of energy balances (2) and boundary conditions (3) during
the change of coordinates, the operator V must be expressed in these coordinates. The
base vectors associated with the transformed coordinate systems are introduced as
(g;» 8,,) for the melt and (&, §,) for the solid.

melt: g,=e,+ (2hn/L)e,, (10a)
g8, = 2h(§)/L)e,, (10b)
solid: g,=e,+2h,(1—1/L)e, (11a)
g,= (/LYL — k() e,. (11b)

The reciprocal base vectors are [30]

melt: gi=e,, (12a)
g" = (Le, — 2hzne,)/2h(C), (12b)
solid: gi=e,, (13a)
8" = (Le, — 2hd(L — 1) &,)/2(1 — h(). (13b)

The gradients of temperature in melt V, 7, and solid V, 7, in transformed coordinates
are simply

.. oT, aT, oT, h,noT L\ oT,
It: V,T =gt L yogn 2l Ik S Sl & — =L, 14
melt T=g P +8 e ex[a A 17]+ey(2h)6n (14)
o awm 0T aT, af, h(L—#) o7, L oT,
lid: 0.7 =gioptign—= =) 9% _t _
- BT 5 *[82 @—n aﬁ]“y[zu——h)] an

(15)

Energy balances (2) can be written in transformed coordinates by formulating the
Laplacian V27,=V,. 9, T, using the definition of the gradient operators given
above. This is not done here since Galerkin’s method does not require the
computation of V37T,. It is obvious from Eq. (14) and (15) that the energy balances
written in transformed coordinates are nonlinear functions of the unknown shape of
the melt/solid interface A(£). These nonlinearities are caused solely by the free-
boundary problem and are present even when radiative heat transfer is neglected
(R=0).

The relationships between the differential element of area in the original coordinate
system dA = dx dy and the elements of area in the transformed regions are calculated
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in terms of determinants g, and g, of the metric tensors [30] associated with coor-
dinate transformations (8) and (9);

melt: dA =g)/* dédn=2h/L dédn, (16a)
solid: dA =gV dédfj=2(1 — (/L)) dé dA. (16b)

¢
3. FINITE-ELEMENT ANALYSIS

The Galerkin finite-element method forms the framework of the four techniques
developed here for solving the steady solidification problem of Egs. (2)-(7). In each
algorithm the temperature fields T,(x, y) and T,(x, y) and interface location A(x) are
represented in expansions of finite-element basis functions and unknown coefficients
such as

T,(xy)= Z a,, P'(x,), T,(x,y) = Zlai.a‘pi(x’J’)’ (17a)
h(x) = Z B Wi (x), (17b)

where N,, N,, and M are the numbers of basis functions associated with unknown
coefficients in each expansion. Bilinear and reduced quadratic polynomials [31] are
tested here as bases {®'(x,y)} for representing temperature and the corresponding
linear and quadratic polynomials are used for representing melt/solid interface shape
{#'(x))}.

The coefficients {a,,,a; ,} are determined by forcing to zero the set of Galerkin
weighted residual equations formed from energy balances (2) and the boundary
conditions. The coefficients {#;} in the expansion for melt-solid interface shape are
determined by satisfying the chosen distinguished condition, either (3) or (4).

The a priori unknown shape of the phase boundary complicates the finite-element
expansions (or any other discretization) when the original coordinate system is used.
During numerical iteration any change in the location of the interface requires that
the position of the quadrilateral mesh be changed (see Fig. 3) and that the finite-
element basis be regenerated. The Isotherm method updates the mesh and basis at
each iteration. The condition for interfacial equilibrium (4) is used as the
distinguished condition; see Fig. 1. An alternative approach which circumvents the
regeneration of the mesh and finite-element basis at each iteration is to solve the
solidification problem in the transformed coordinates defined by Egs. (8 and 9). In
these coordinates, a fixed finite-element grid is established (see Fig. 5) and the
nonlinear coupling between the temperature field and interface shape is set. The
Kinematic-Isotherm, Isotherm—Newton, and Energy—Flux methods all solve problem
(2)~(7) in transformed coordinates. As shown in Fig. 1, these methods differ in the
choice of distinguished condition, either (3) or (4), and the iterative method used to
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solve the system of nonlinear algebraic equations. Each finite-element algorithm is
outlined below.

3.1 Solution in Original Coordinates: Isotherm Method

When the condition for interfacial equilibrium is used as the distinguished
condition, the finite-element representations for the temperature fields are most
conveniently combined into a single field as

Ny Ny No Ne
Ty(x,y)= Z ai,j¢i(xa.V) + Z ai,jq)i(x’y) + 2 a;, P'(x )+ Z a; ,P'(x,y),
i=1 im i=1 ey’

(18)
where N, is the number of basis functions defined at y =0, N, is the remaining
number of functions defined in the melt, N, is the number of basis functions defined
at y=L, and N, is the remaining number of functions defined in the solid. The nodes
defining the temperature along the melt/solid interface are not separated out here, but
are included in the set for the melt. Since the temperatures along the inlet and outlet
boundaries are set by Eq.(7), the coefficients {af,} and {af,} are known. In the
notation of Eq. (20), T)(x, y) is equal to T,(x, y) when the point (x, y) is in the melt
and to 7,(x, y) when (x, y) is in the solid. The Galerkin weighted residual integrals of
Egs. (2) are combined as a single integral over the total area (%, + %) of melt and
solid and integrated by parts in the usual way to incorporate the flux boundary
condition at the melt/solid interface. The residual equations that result are

@’'PS

o TR

R;l)=_f [VT; - V‘pj‘f‘P(ey - VT,) @’] dd +J
2, ?

D ¢

- @/|B(T, — T,,) + R(TS — Tg) dt =0, (19)

0D .4

j=1,.,N,, where N,=N, + N,. The notation for boundaries displayed in Fig. 3 has
been used and df is the increment of arc-length along each segment of boundary;
df = [1 + h2]"? dx along the phase boundary and df = dy along the side of the sheet.
Boundary conditions (5) and (6) and the fact that each basis function {@’} vanishes
on the boundaries 6%, and é%, have also been used.

Equations (19) are a nonlinear algebraic set for the coefficients {q;,, a; } once the
finite-element approximations for interface shape and temperature fields (17) are
introduced and the area integrals are computed with nine-point Gaussian quadrature.
This set is more conveniently expressed as

R”(a,,a,;B*)=0, (20)
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where 0, = (a5 @y g srees Oy )75 8o = (@psas Ay gy Qy,, 4)T BY =B, B B
Equation set (20) is solved by Newton’s method. From first approximations
(@, a'?) to the temperature fields, successive refinements are calculated as solutions
of the following linear equations at the mth iteration

(¢) (m) {m+1)

J 0\ /e —a — _RD (g™ gl g0 21
0 JO Jlgm _ gtm+n | =7 (0™, a5 B™), (21)
= = ¢ 9

where the submatrices J“' and J have components Ji'=2R{"/oa;, and
J§= R"’/('}aj ,» respectively. The Newton iterations are contmued untll the largest
change in any element of the solution vector is smaller than 10~"3,

The temperature fields calculated as the solution of Egs. (20) are not necessarily a
solution of steady solidification problem (2)—(7). The latter is true only if the selected
interface shape is the melting-point isotherm of the computed temperature
distributions, that is, if A(x) expressed by (17b) satisfies distinguished boundary
condition (4). The melting point isotherm is interpolated linearly from (17b) with
y="h(x)=YM" B+ Vyi(x). If the new coefficients {f{** "} calculated from the inter-
polation do not agree with the original estimate {8{*'} to one part in 10~ ", the entire

NEWTON ITERATION FOR

TEMPERATURE FIELD
GENERATE FINITE

ELEMENT MESH ;_ FORMUL{E
START (N LIQUID AND SOLID ol
— gD ) e H
B FROM CURRENT B f EAMETA

L:J"'J

e
SOLVE LINEAR |
| EQUATION SET (21) |

L _ -

NO: SET g(k)= E(k+|) r_._.__l——___

| CHECK COVERGENCE|

CHECK CONVERGENCE } NO {-»
"B(Ht)_ﬁ(k)" <" L YES 1
— —_— m_ B - -

(ag.a,, ) «—]YES

SEARCH TEMPERATURE
FIELD FOR MELTING P k I
ISOTHERM. INTERPOLATE B( )}

Fic. 6. Flowsheet for Isotherm method.
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sequence is repeated using the new approximation {#}*'} in the temperature field
calculation. The Isotherm formulation is shown schematically in Fig. 6. As discussed
in Section 4, this iteration scheme has been found to converge for a wide range of
values of Stefan and radiation numbers and initial approximations to interface shape
h{x).

The formulation marked as III on Fig. 1 was also tested. For an approximate
interface shape, temperature fields were calculated that satisfied Eqgs. (2) and (4)-(7).
A new interface shape was found by solving by Newton’s method the nonlinear
equation set resulting from the Galerkin weighted residuals found from the interfacial
energy balance, where the temperature gradients were evaluated from the previously
calculated temperature field. The Jacobian matrix of the interface residual equations
was numerically singular; consequently, the iteration for the new interface location
diverged.

3.2 Solution in Transformed Coordinates

When the solidification problem is cast in the new coordinates of Eqgs. (8) and (9),
no free boundary exists. In a numerical solution scheme, there is no need for updating
the finite element mesh as is necessary in the Isotherm method. Three numerical
algorithms, the Kinematic-Isotherm, Isotherm—Newton, and Energy-Flux methods,
are presented here in transformed coordinates. The choice of distinguished condition
and the technique used to solve the nonlinear equation set are shown in Fig. 1 for
each method.

3.2a Kinematic—Isotherm Method

When condition (4) for the melting point isotherm is used as the distinguished
condition, the finite-element representation for the temperature fields 7,(¢ #) in
transformed regions for melt (j = ¢) and solid (j = ¢) are combined into a single field
as

. N¢ ) N0 Ny Ne ‘
T&m=3 a,PEGEm+ 3 af, O'EGm+ 3, 2'Gm+ Y af 2 n),
i=1 i=1 i=1 i=1
(22a)

and the interface shape is represented as
M .
h@&)= 3 Biv'(©). (22b)
i=1

The finite-element basis functions are defined in (&, #7) coordinates with respect to a
fixed grid (cf. Fig.5). The Galerkin equations are formed by integrating the
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transformed energy balances over the total area &,=9, + %, Applying the
transformed versions of boundary conditions (3), (5), and (6) yields

RP=_1 j @'PS dE + j &/ [B(T, — T)) + R(T* — T%)|(2h/L) dn
/ o1 2

91,[

+[, VIBETo) + RAE - T/ — k) di

+J@ V. @/ .V, T, + ®Pe, -V, T g, dédn=0, i=t,4, j=1,..,N. (23)
The notation used for boundaries is shown in Fig. 5.

Substituting Eqgs. (22) into Eqgs. (23) gives a set of nonlinear algebraic equations in
terms of the coefficients {q,,}, {a;,}, and {8,}. The coefficients {f;} are determined
by the M conditions that result from the constraints of interfacial equilibrium (4), the
distinguished condition. The resulting set of (N, + M) nonlinear equations are explicit
in the unknown coefficients and hence can be solved by any conventional method.
We test two alternatives. The first, the Kinematic—Isotherm method, is a successive
approximation scheme that decouples the (N,+ M)-dimensional set into N,
dimensional set (23) for the temperature field and an auxiliary system of dimension
M for determining interface shape. This splitting technique is akin to the Isotherm
formulation. The second technique, the Isotherm—Newton method, solves the entire
equation set by Newton’s method.

In the first iteration of the Kinematic—Isotherm method, values of the coefficients
{B{¥} are assumed and Eqs. (23) are reduced to a set of nonlinear algebraic equations
in terms of the coefficients {¢;,}, {a; }:

R, ;%) =0. 24)

These equations are solved by Newton’s method. The linear equation set solved at the
mth iteration is

_ §om j(!) 0 alm __ gim+1
1% (5m )= (o /o) (el atnen )= R™@™ams0), - 25)

£ “8’;) — &)
were J©) = 0R\™/da, ; and J = OR{™[da, ,.

The temperature field calculated as the solution of Egs. (24) is only a solution of
the solidification problem if the boundary # = L/2 is the melting point isotherm, that
is, if transformed distinguished condition (4) is satisfied. Equation (4) is put in a new
form by taking the derivative of the melt temperature in the direction always tangent
to the melt/solid interface. From Eq. (4), the temperature does not vary in this
direction. This condition is written in transformed coordinates as

dr**  dn® 5T, [0€ 2p% 26)
a A (ai/a'l)n:uz( L >’
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FiG. 7. Flowsheet for Kinematic—Isotherm method.

an identity when the interface between two successive iterations is identically an
isotherm. All terms on the right-hand side of (26) are evaluated based on the previous
approximation for #*(£) and the updated interface A** (&) is calculated by solving
(26) by Euler’s method. The initial condition 2%*"(0) for the integration is deter-
mined so that the corresponding value of 7 (or #) satisfies T,(0,#)=T,; this
condition guarantees that the integration of (26) tracks the melting point isotherm.
The sequence of temperature field and interface shape calculations is repeated until
the largest change of any coefficient {8(*'} for the interface is less than 10 '3, The
Kinematic—Isotherm formulation is shown schematically in Fig. 7.

3.2b Isotherm—Newton Method

In this algorithm the (N, + M)-dimensional equations formed from Eqgs. (24) and
distinguished condition (4) are solved by Newton’s method. The M-dimensional form
of the condition for the melting point.is developed by equating the melt temperature
T,(& L/2) to T, at each of the nodal points along the phase boundary (cf. Fig. 5)

RY,=T,(,L/2)—T,=0, j=1l.,M. (27)



134 ETTOUNEY AND BROWN

The residual equations for the energy balances are taken as functions of {8} as well
as of {@;,} and {q, ,}, i.e.,

RM(a,, a,;58) =R (a,, a,; B). (28)

The combined equation set (27)—(28) is partially coupled; the interface shape A(x)
appears in each of the residual equations (28). The distinguished conditions (27),
however, are independent of the interface location {£;}.

At each iteration a linear system of equations is solved

F(K) (K) (k) (k+1)
J M @ -
k) k+1
alk — g+ n
A x / \

=RW, (29)

j(N)A(k+1) =

where J® is the N dimensional Jacobian defined by Eq.(25) and the other
submatrices are given by

M® = RS0, i=1uN, =l M, (302)
L® =eRN foa, ;, i=1,.,M, j=1,.,N,, (30b)
L& =0oRN joa,;, i=1.,M, j=1,.,N,, (30c)

which are derived explicitly. The Jacobian J™ is sparse; the (N, X N,) portion J* is
tightly banded along its main diagonal. The last M columns and rows of J* are not
banded, so .Z‘N’ has the “arrowhead” structure shown in Fig. 8. For the finite-element
meshes considered below, the number of nonzero elements of J are evenly divided
between the main submatrix /' and the auxiliary matrices M, L, and L®. A
Fortran subroutine was written to perform Gaussian elimination on the sygtem of

NS

AN
%

RN

FiG. 8. Structure of Jacobian matrix :7‘” > of Isotherm~Newton formulation.
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F16. 9. Flowsheet for Isotherm—Newton method.

equations (29) while accounting for this structure. The Newton iterations are
continued until the largest change in any component of A**" is less than 10~ "°.
This method is shown schematically in Fig. 9.

3.2¢ Energy—Flux Method

The finite-element representations for melt and solid temperature are best left
separated when energy balance (3) at the interface is applied as the distinguished
condition. In terms of the transformed coordinates, these are

N No . Ny .
T,&m=Y e, ®EnN+ D af, 'En+ 2 ai, P'E&n)

i=1 i=1 i=1

Ng No . Ny o
LEN=Y a, ,2'EMN+ Y af PEN+ D af P )

i=1 i=1 i=1

€3]
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where N/ =N, — N, is the number of basis functions that are nonzero along the
melt/solid boundary #=L/2. Isotherm condition (4) is satisfied as a boundary
condition for any interface shape and the coefficients {a],} and {a] ,} are each equal
to T,,. Expression (22b) represents A(x).

The Galerkin equations for energy balance (2) are

melt: R =— L] (v, .9, T, + &P(e, - V,T)|(2h/L) d¢ dn
(4

—| BT, - T,)+ R(T} — T,))(2h/L) dn =,

oD ¢
J=1L..N/, (32)

solid: RY) = —j. (V. @ . 0, T, + &'P(e, - V. T,))(2/L)L — h) dE dn
Dy

—[ VBT, ~T)+ R ~ TOI/L)L ~ hydn =0,
AW

j=1.,N. (33)

The notation for regions and boundaries is given in Fig. 5.
The shape of the melt/solid interface is determined from the Galerkin residual
equations for interfacial energy balance (3)

PS

1
F) — i O S v/ Al
R”j—jo !p(é) (l’l V,T[ n aTa [1+h§]”2

)ds=0, J=1 M. (34)

Equations (32)-(34) together with expansions (22b) and (31) describe a system of
(N, + N/ + M) nonlinear algebraic equations in terms of the unknowns (a,, a,, B).
These equations are only partially coupled; the interface shape A(x) appears in each
equation, however, Galerkin equations (32) are independent of a, and Egs. (33) are
independent of a, .

An attempt was made to decouple the equation set. For an approximate interface
shape {B{®}, we solved Eqgs. (32) for the temperature coefficients {a, ;} and Egs. (33)
for {a,;}. These temperature fields were used in the M equations of (34) to calculate
an improved location for the phase boundary. Newton’s method was employed for
solving all three equations sets. This iterative scheme failed. Just as in the original
coordinate system, the Jacobian matrix associated with the residual equations of the
interfacial energy balance was numerically singular; the corrections to the interface
location had sinusoidal oscillations that propagated with each iteration and caused
the calculation to diverge. These oscillations were present even when the exact (to
machine accuracy) interface shape was used as an initial approximation.
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Solution of the entire equation set (32)-(34) by Newton’s method was successful
and is the basis for the Energy—Flux method. The system of linear equations solved at
each iteration is

E(l) 9 g(l) ﬂ;k) _ a;k+ 1) R;F)
!(F)A(IH- 1) = 9 g(d) g(d) (lf,k) _ a(ak+ 1) = R(aF) = R(F). (35)
40} 5 (9) &) (k) (k+1) (F)
RO E© EO/\p®_g \R{

The seven matrices appearing in the Jacobian J* have components

HY =0R" joa, ;, i=1..,N/, j=1..,N/, (36a)
HY=0R%)/0a,;,  i=1,,Ni, j=1.,N, (36b)
G =R /0B, i=1.,N/, j=1.u,M, (36¢)
G =oR)/ap;, i=1,.,N, j=1,,M, (35d)
RO =0R" [0, ;, i=1.,M, j=1.,N/, (36e)
KP=0R" [oa,;, i=1.,M, j=1.,N, (36f)
KD =0R" /0B, i=1.,M, j=L.,M. (36g)

Explicit formulas are derived for each of the components of =J""" ), which has the same
structure as the matrix J® (cf. Eq. (32)). The schematic of the Energy—Flux iteration
is identical to Fig. 9. The iterations are continued until the largest change in any
component of the correction vector A is less than 10~ "3,

4, NUMERICAL RESULTS

Fortran programs have been written for the four formulations of the solidification
problem detailed in the previous section. Both linear and quadratic finite-element
representations for temperature fields and melt/solid interface shape have been tested.
All calculations were performed in extended precision arithmetic on the IBM 370/168
computer at the Massachusetts Institute of Technology.

The efficiency and accuracy of the four methods were compared for the case
(S =R =0), where the model problem became linear and the closed-form solution
was known, and for cases where the nonlinearities caused by latent heat release
(S #0) and radiation (R # 0) were significant. The tests with the linear problem
contrasted the accuracy of the various choices of finite element basis and
distinguished condition, and gave indications of the relative efficiency of the four
methods. This apparently linear test problem was not linear when viewed as a free-
boundary problem in the framework of any of the four iterative schemes; multiple
iterations were necessary for each scheme method to converge to the solution.
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The very nonlinear test problem substantiated the conclusions from the linear
problem and pointed out the gain in efficiency due to the implementation of Newton’s
method for the simultaneous calculation of the field variables and free-boundary
shape. All convergence results compare calculations that were initiated with the
initial interface shape A(x)=0.5 and with linear temperature profiles satisfying
essential conditions (7).

4.1 Comparison to Closed-Form Solution (R =S =0)

The melt/solid interface shapes generates by the four finite element methods are
compared in TableI to the interface shape interpolated from the closed form of the
temperature field for R =0, § =0, and B = 1.0. Results are given for a mesh of four
quadrilateral elements in the x- and y-directions in both melt and solid regions. The
finite-element results never differed from the exact solution by more than two percent.

Although the accuracy of the interface shape calculated by any of the methods was
systematically improved by increasing the number of elements, the rate of
improvement was found to be strongly dependent on the formulation and on the type
of basis function employed. The change in the error in the computed interface shape
with the characteristic size of the mesh is shown in Fig. 10 for the case B = 0.1. The
error was measured by the norm of the difference between the coefficients {§,;} of the
finite-element approximation and the corresponding values {f;} interpolated from the
exact temperature field

M 1/2
— B¢, = e)2
IB—Bl=1{> B8 E : (37)
i=1
0

10 1 T T
~ ENERGY- FLUX /LINEAR
o
ozl 07

ISOTHERM, ISOTHERM - NEWTON
Q| AND KINEMATIC -ISOTHERM/LINEAR
'3 1.5
O 4l -
x |0 1.6
«
= ENERGY -FLUX/
UADRATI

g QUADRATIC 5 ISOTHERM AND
Q2 o8l I1SOTHERM -NEWTON._|
= QUADRATIC
]
o
w

108 ] | | |

0.125 0.167 0.25 0.50

ELEMENT LENGTH IN x DIRECTION
FiG. 10. Convergence of four finite-element formulations as a function of element size for prototype

solidification problem with B = 0.1, P =0.5, and T,, = 0.5. Results are shown for quadratic and linear
bases.
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Each curve in Fig. 10 was fit to the relationship
1@ __Rel —Chr  (22)

e ——————————————————————

rate for the formulations. These values of r are shown in Fig. 10. Several charac-
teristics of the numerical formulations were apparent. As predicted from finite-
element theory for the solution of linear partial differential equations [31], the
quadratic polynomials were more accurate than the bilinear ones for bases formed
from the same mesh. This result was independent of which formulation was used.

All three formulations based on melting point isotherm (4) as the distinguished
condition had identical convergence rates. This was expected for the Kinematic—
Isotherm and Isotherm—Newton formulations since both were based on the same set
of residual equations. The equivalence of the interface shapes calculated by the
Isotherm method and the two formulations in transformed coordiantes implied that
the complications to the energy balances caused by mappings (8) and (9) did not
reduce the accuracy of the calculated temperature fields. The values of r for bilinear
(r=15) and quadratic elements (r=3.5) compared favorably with the values
(bilinear r =2, reduced quadratic r=3) for solving linear equations [31] derived
from asymptotic theories that are valid for small k. This agreement between
calculations on relatively course grids and theory is not at all unusual for finite-
element (or finite-difference) solution of elliptic equations with smooth solutions; for
other examples see [31, Chap. 8; 32, Chap. 4].

The choice of distinguished boundary condition affected the accuracy of the
formulation. The rates of convergence for the Energy—Flux formulation (based on the

40 I 100
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F1G. 11. Solution error and execution time as a function of Biot number B for P = 0.5 and T, = 0.5.
Results are for Isotherm and Isotherm—Newton formulations with a 4 X 4 mesh of elements in each
phase and quadratic basis functions. The number of iterations required for each calculation is shown on
the curve of execution times. For the same mesh, the errors in the solutions by the two methods are iden-
tical, since both are based on the same set of residual equations.
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interfacial energy balance) were more than an order lower than the rates for the three
methods based on the condition for interfacial equilibrium as the distinguished
condition. The explanation for this result came from the form of the two interfacial
boundary conditions. The energy balance required finite-element approximations to
the normal derivatives of temperature at the interface; these derivatives are less
accurate (at least one order of /) than the temperature fields needed in the isotherm
condition.

The accuracy of the melt/solid interface shape computed by any of the finite-
element formulations decreased with increasing Biot number; as B was increased, the
phase boundary became more curved, the lateral temperature gradients increased and
the temperature field calculation became more inaccurate. This trend is shown in
Fig. 11 for the Isotherm—Newton and Isotherm formations with a 4 X 4 mesh of
elements in each phase.
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Fic. 12. Convergence of four formulations as a function of iteration number for B =0.1, P=0.5,
and T, = 0.5. Results are for (a) linear and (b) quadratic finite-element approximations and for a 4 X 4
mesh of elements in melt and solid.
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The efficiency of each formulation is dependent on the choice of the iterative
technique used to solve the set of nonlinear algebraic equations. Figures 12a and b
show the convergence with iteration count for the four finite element approximations;
the parameter values are the same as for Fig. 10. Convergence was measured by the

magnitude of the largest change in the coefficients {8;,} between two successive
iterations, i.e.,

185" B o= max |6 P (39)

The Energy-Flux and Isotherm formulations, both founded on Newton’s method for
solving the nonlinear equation set, exhibited quadratic rates of convergence (the
number of significant digits in the approximate solution almost doubled from one
iteration to the next), whereas both the Isotherm and Kinematic-Isotherm methods
converged linearly.

The overall efficiency of each method accounts for the accuracy, rate of
convergence, and computer time required for each iteration of the scheme. In Fig. 13,
the accuracies of the calculated interface shape || — B€||, are plotted against the
amounts of computer time (in cpu seconds) required for each of the four methods.
For bilinear basis functions, the Isotherm and Kinematic-Isotherm methods had
similar efficiency for a specified level of accuracy; no appreciable difference in
execution time or accuracy was found between integrating numerically kinematic
condition (33) or interpolating isotherm (27).

The quadratic convergence rate of the Isotherm—Newton method did not result in
increased efficiency relative to the Isotherm and Kinematic—Isotherm formulations.
For the Isotherm—Newton method, the large amount of execution time needed for
inverting the matrix shown in Fig. 8 more than offset the fewer number of iterations
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FiG. 13. Execution time as a function of error in the calculated melt/solid interface shape for
B=0.1,P=05,and T, =0.5.
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required by Newton’s iteration. The Isotherm method was more efficient than the
Isotherm—Newton method for calculations over nearly two decades of Biot number as
shown in Fig. 11 along with the number of iterations for each calculation. The
thermal problem defined by residual equations (19) for a specified interface shape
was linear when S =0 and R =0; here, the Isotherm algorithm calculated an
updated temperature field in a single Newton iteration. The Isotherm—Newton method
was expected to be more efficient when the residuals of the field equations were
nonlinear in the field variables, as is demonstrated by the results for the nonlinear
solidification problem.

4.2 Results for Nonlinear Solidification Problem

The conclusions about the relative accuracy of the four finite-element schemes that
were reached on the basis of the linear test problem remained unaltered when the
nonlinearities caused by latent heat release and radiation from the side were included.
Interface shapes are given in TableII for the Isotherm, Isotherm-Newton, and
Energy-Flux methods with quadratic basis functions and the Isotherm method with
linear ones. The results are for three meshes and R = 0.5 and S = 1.0. Underlined are
the number of digits that remain unchanged relative to the most refined calculation
for each method. Again the Isotherm and Isotherm—Newton formulations gave iden-
tical interface shapes and were more accurate than the Energy—Flux method. The
rates of convergence of each formulation were estimated by using as the “exact”
interface shape the result calculated with the Isotherm method for quadratic inter-
polation and an 8 X 8 mesh of elements in each phase. The norm of the difference
between this interface shape and those calculated with other formulations is shown in
Fig. 14 as a function of the characteristic element size. The relative accuracy of each
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FiG. 14, Convergence of Isotherm, Isotherm—Newton, and Energy—Flux methods as a function of
element size for B=1.0,/R =0.5, T,, = 0.5, and § = 1.0.
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FiG. 15. Convergence of Isotherm, Isotherm—Newton, and Energy—Flux formulations as a function
of iteration number for R =0.5, P=05,5=10,B=1,7,=0.5, T, =0, and L = 1. Results are for a
4 X 4 mesh of elements in each phase.

of the methods did not change with the addition of the nonlinearities caused by latent
heat release and radiation; compare Figs. 10 and 14.
The convergence as a function of iteration number is shown in Fig. 15 for the

—n o : a4 s ar 2 P
r——————— —D e 1

e l_

hence each iteration of the Isotherm scheme required one or more Newton iterations
for calculation of an update to the temperature field. These additional iterations
increased the execution time of the Isotherm iteration and, as expected, shifted its
efficiency relative to the Isotherm—Newton and Energy—Flux formulations. As shown
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F1G. 16. Execution times as a function of error in the calculated melt/solid interface shape for the
parameter values given in Fig. 15.
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FiG. 17. Execution times for radiation numbers between 0.1 and 100 and for P=0.5, S = 1.0,
B=10,T,=05 T,=0, and L =1.0. Results are for a 4 X 4 mesh of elements in each phase. The
number of iterations required for each calculation is shown above the curve. For the Isotherm method,
the first coefficient is the number of overall iterations and the second is the number of Newton iterations
for temperature fields.

in Fig. 16, the Isotherm—Newton formulation was found most efficient over a range of
three decades of accuracy for the interface shape. The Energy—Flux method also was
found to be competitive with the Isotherm formulation when the demands on solution
accuracy were not stringent. The superior efficiency of the Isotherm—Newton method
was found for the entire range of radiation numbers over which the formulations
converged. The execution times for calculations performed with Isotherm and
Isotherm—Newton formulations using quadratic basis functions are shown in Fig. 17.
The number of iterations needed for each calculation is also shown; for the Isotherm
scheme both the number of overall iterations and the total number of Newton
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FiG. 18. Variation of melt/solid interface shape with radiation number.
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Fig. 19. Variation of melt/solid interface shape with latent heat release as measured by the Stefan
number S.

iterations for the temperature field are shown. For radiation numbers between 0.1 and
10 the number of iterations required for convergence of the Isotherm—Newton
algorithm stayed constant. As R was increased above ten, the melt/solid interface
moved close to y =0 and caused large temperature gradients in the melt; interface
shapes for R between 1 and 50 are shown in Fig. 18. Neither the Isotherm nor the
Isotherm—Newton iterations converged for R greater than 80 and the initial approx-
imation of a flat phase boundary. No attempt was made to employ continuation
methods to optimize the initial approximation and extend the range of R for con-
vergence.

The rate of convergence of the Isotherm—Newton method was not affected by
changes in the latent heat; for S between one and four this scheme converged
quadratically in less than seven iterations. Interface shapes for three of these cases are

TABLE III

Comparison of Melt/Solid Interface Calculated by the Isotherm—Newton Method with
R=10,5§=40,B=10,P=05, and T,=0.5

Location of melt/solid interface A(x)
Finite-element

basis Mesh x=0 x=0.5 x=1.0
Linear 4%x4 0.822997 0.810185 0.428789
8x8 0.821231 0.808595 0.387874
16 x 12 0.820717 0.808299 0.366873
Quadratic 4x4 0.820152 0.808117 0.386334

8x8 0.820396 0.808305 0.365309




148 ETTOUNEY AND BROWN

shown in Fig. 19. Increasing the amount of latent heat shifts the interface towards the
cold end (y = 1) of the sheet and steepens the interface near the edge of the melt, thus
causing large gradients in temperature. To better approximate these gradients, the
quadrilateral mesh has been graded toward the interface in both melt and solid. This
is easily done in the transformed coordinates (¢, 7) because the interface is the coor-
dinate surface n = 1. Interface positions calculated with both linear and quadratic
basis functions and a number of meshes are shown in Table III. The shapes
calculated with the linear and quadratic approximations were within +0.001 for the
finest meshes used.

5. CONCLUSIONS

The Galerkin finite-element methods developed here are well suited to solving
steady solidification problems. When the problem is solved in the original coordinate
system, the unknown shape of the melt/solid interface is easily approximated by
isoparametric finite elements and the flux boundary conditions are incorporated as
natural conditions for the Galerkin residual equations. When the problem is
transformed so that the interface becomes fixed, the flux conditions and field
equations are complicated, but remain in gradient form so that they are
systematically handled by Galerkin’s method.

The choices of distinguished condition, of the technique used to solve the nonlinear
algebraic equations, and of the finite-element basis all affect the accuracy and
efficiency of the finite-element formulation. The choice of distinguished condition is
critical. The three formulations based on the condition for interfacial equilibrium all
produced more accurate interface shapes than the one method (Energy—Flux) that
used the interfacial energy balance. Other formulations (III and IV in Fig. 1) based
on the interfacial energy balance failed to converge for the prototype problem. The
Isotherm and Kinematic—Isotherm formulations, like previous methods, decouple the
calculation of the temperature fieid and interface shape at each iteration. When the
energy equations (or boundary conditions) are nonlinear, iterative calculation of the
temperature field is also needed. The Isotherm—Newton and Energy—Flux methods
couple together the residuals of the field equations and the distinguished condition
and iterate by Newton’s method simultaneously for the interface shape and
temperature field. Both methods converged in fewer iterations than the successive-
approximation based formulation. When radiation and latent heat are included, the
Isotherm—Newton formulation was most efficient because it combined the accuracy
found in methods based on distinguishing the interfacial equilibrium condition with
the rapid convergence of Newton’s method. The Isotherm—Newton method converged
for larger parameter ranges (0K R <80, 0 S4) than have been reported
previously for any calculation of a Stefan problem.

The formulations and the conclusions reached about choices of distinguished
condition and iteration scheme are applicable to models of solidification that are
much more complicated than the problem treated here. Expanding the calculation to
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include either a detailed model of the fluid mechanics in the melt [33] or the effect of
mass transfer of a solute on the solidification of a binary melt [34] shifts the
efficiency further towards the Isotherm—Newton scheme. Both cases result in much
larger systems of algebraic equations for the field variables, i.e., temperature, velocity,
pressure, and concentration, so that the number of coefficients associated with the
interface shape is small compared to the number associated with the field variables.
In these cases the additional cost is small for solving linear equation sets with the
“arrowhead” structure over the banded matrices arising in successive approximation
methods. Sajto and Scriven [35] have reached this same conclusion for the
calculation of a viscous flow with a meniscus by a Galerkin—Newton method.
Although Saito and Scriven formulated the Galerkin equations in the original coor-
dinate system, the residuals and elements of the Jacobian matrix were calculated in
the transformed coordinates that correspond to the standard isoparametric mapping
for each element [36]. The isoparametric mapping makes explicit the dependence of
the nodes of the mesh and the basis functions on the interface shape and leads to
formulas for the terms involving the interface shape in the Jacobian matrix. The
isoparametric mapping technique is a method for implementing algorithms II and IV
of Fig. 1.
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